夜夜揉揉日日人人青青,偷窥精品在线视频,精品妇女一区二区三区,a√天堂98国产在线

<span id="lndpy"></span>
  • <small id="lndpy"><del id="lndpy"><rt id="lndpy"></rt></del></small><dfn id="lndpy"></dfn>
    <bdo id="lndpy"><delect id="lndpy"><legend id="lndpy"></legend></delect></bdo>
  • <address id="lndpy"><ul id="lndpy"><strike id="lndpy"></strike></ul></address>
    2020人臉識別報(bào)告:上萬家企業(yè)入局,八大技術(shù)六個(gè)趨勢一文看盡

    2020人臉識別報(bào)告:上萬家企業(yè)入局,八大技術(shù)六個(gè)趨勢一文看盡

    jinrou 2025-03-24 骨科???/a> 4 次瀏覽 0個(gè)評論

    8大技術(shù)優(yōu)勢,6個(gè)發(fā)展趨勢,人臉識別已經(jīng)深入到了生活的方方面面。

    編輯 | 智東西內(nèi)參

    近年來, 隨著人工智能、計(jì)算機(jī)視覺、大數(shù)據(jù)、云計(jì)算、芯片等技術(shù)的迅速發(fā)展,人臉識別技術(shù)取得了長足的進(jìn)步并且在眾多場景中得以成功應(yīng)用并大規(guī)模商業(yè)化普及,為經(jīng)濟(jì)社會的發(fā)展以及人們?nèi)粘I顜肀憬?。

    就市場發(fā)展趨勢而言, 人臉識別應(yīng)用場景雖然滲透各個(gè)行業(yè)場景, 但市場規(guī)模增長趨勢出現(xiàn)分化, 國內(nèi)市場呈現(xiàn)從算法競爭到芯片全產(chǎn)業(yè)鏈激烈競爭的狀態(tài);就技術(shù)發(fā)展層面, 邊緣端 SOC 芯片算力的提升使得人臉識別系統(tǒng)中的部分甚至全部算法可以運(yùn)行在邊緣設(shè)備上, 從而使云邊結(jié)合已成為人臉識別產(chǎn)品和應(yīng)用方案的發(fā)展趨勢。

    本期的智能內(nèi)參,我們推薦全國信息技術(shù)標(biāo)準(zhǔn)化技術(shù)委員會的研究報(bào)告《2020 年人臉識別行業(yè)研究報(bào)告》,從技術(shù)特點(diǎn)、行業(yè)發(fā)展趨勢和標(biāo)準(zhǔn)化現(xiàn)狀三方面還原人臉識別技術(shù)的最新發(fā)展?fàn)顩r。如果想收藏本文的報(bào)告,可以在智東西(公眾號:zhidxcom)回復(fù)關(guān)鍵詞“nc515”獲取。

    本期內(nèi)參來源:全國信息技術(shù)標(biāo)準(zhǔn)化技術(shù)委員會

    原標(biāo)題:

    《2020 年人臉識別行業(yè)研究報(bào)告》

    作者:蔣慧 等

    01.

    什么是人臉識別?

    人臉識別 ( Face Recognition) 是一種基于人的面部特征信息進(jìn)行身份識別的生物特征識別技術(shù) 。近年來 , 隨著人工智能 、 計(jì)算機(jī)視覺 、 大數(shù)據(jù) 、 云計(jì)算 、 芯片等技術(shù)的迅速發(fā)展 , 人臉識別技術(shù)取得了長足的進(jìn)步并且在眾多場景中得以成功應(yīng)用 。

    廣義的人臉識別實(shí)際包括構(gòu)建人臉識別系統(tǒng)的一系列相關(guān)技術(shù) , 包括人臉視圖采集 、 人臉定位 、 人臉識別預(yù)處理 、 身份確認(rèn)以及身份查找等 ;而狹義的人臉識別特指通過人臉進(jìn)行身份確認(rèn)或者身份查找的技術(shù)和系統(tǒng) 。此外 , 部分應(yīng)用場景下還可能涉及質(zhì)量評價(jià) 、 活體檢測等算法模塊。

    人臉識別的應(yīng)用模式主要包括三種:

    (1)、人臉驗(yàn)證 (Face Verification) : 判定兩張人臉圖像是否屬于同一個(gè)人 ,常用于身份認(rèn)證如人證核驗(yàn) 。

    (2)、人臉辨識 ( Face Identification) : 給定一張人臉圖像 , 判斷是否在注冊庫中 , 若在則返回具體的身份信息 , 常用于靜態(tài)檢索或動態(tài)布控 。

    (3)、人臉聚類 ( Face Clustering) : 給定一批人臉圖像 , 將相同人的圖像歸類到同一個(gè)類 , 不同人的劃分為不同的類 , 常見的應(yīng)用有智能相冊 、 一人一檔等 。

    1、發(fā)展歷程

    人臉識別的研究開始于 20 世紀(jì) 60 年代 , 到 90 年代進(jìn)入了初級應(yīng)用階段 ,主要停留在學(xué)術(shù)研究和小范圍的實(shí)驗(yàn)室環(huán)境應(yīng)用 , 直到 2012 年后的深度學(xué)習(xí)的復(fù)興 , 人臉識別技術(shù)取得歷史性的進(jìn)步 , 真正實(shí)現(xiàn)大規(guī)模商業(yè)化普及 , 且識別能力已經(jīng)遠(yuǎn)遠(yuǎn)超過了人類的常規(guī)辨識度 。

    目前 , 從全球人臉識別技術(shù)領(lǐng)域的應(yīng)用場景布局來看 , 安防 、 金融 、 交通 、 樓宇等是相對較為成熟的領(lǐng)域 , 而在零售 、 廣告 、 智能設(shè)備 、 教育 、 醫(yī)療 、 娛樂等領(lǐng)域也均有較多應(yīng)用場景 , 為經(jīng)濟(jì)社會的發(fā)展以及人們?nèi)粘I畹谋憬輲砹诵聶C(jī)遇 。

    2、政策現(xiàn)狀

    隨著人工智能技術(shù)水平的迅速發(fā)展與經(jīng)濟(jì)發(fā)展水平的穩(wěn)步踏進(jìn) , 在大數(shù)據(jù)應(yīng)用的帶領(lǐng)下 , 人臉識別技術(shù)在智慧城市 、 安防市場等行業(yè)得到了廣闊的應(yīng)用 ,與此同時(shí)人臉識別技術(shù)應(yīng)用過程所涉及的監(jiān)管問題也面臨著越來越高的挑戰(zhàn) 。面對目前正飛速發(fā)展的人臉識別技術(shù) , 我國制定了一系列政策來促進(jìn)其更健康的發(fā)展。

    2017 年 7 月 , 國務(wù)院發(fā)布 《 新一代人工智能發(fā)展規(guī)劃 》 ( 國發(fā) 〔 2017 〕 35 號 )指出建設(shè)安全便捷的智能社會 , 圍繞行政管理 、 司法管理 、 城市管理 、環(huán)境保護(hù)等社會治理的熱點(diǎn)難點(diǎn)問題 , 促進(jìn)人工智能技術(shù)應(yīng)用 , 推動社會治理現(xiàn)代化 。同時(shí) , 圍繞社會綜合治理 、 新型犯罪偵查 、 反恐等迫切需求 , 提出研發(fā)視頻圖像信息分析識別技術(shù) 、 生物特征識別技術(shù)的智能安防與警用產(chǎn)品 , 建立智能化監(jiān)測平臺的要求。

    全國人大在 2018 年修正的 《 中華人民共和國反恐怖主義法 》 第五十條提到 :公安機(jī)關(guān)調(diào)查恐怖活動嫌疑 , 可以依照有關(guān)法律規(guī)定對嫌疑人員進(jìn)行盤問 、 檢查 、 傳喚 , 可以提取或者采集肖像 、 指紋 、 虹膜圖像等人體生物識別信息和血液 、 尿液 、 脫落細(xì)胞等生物樣本 , 并留存其簽名 。

    2019 年 9 月 , 中國人民銀行印發(fā)的 《 金融科技 ( FinTech ) 發(fā)展規(guī)劃 ( 2019-2021 年 ) 》 ( 以下簡稱規(guī)劃 ) , 明確提出構(gòu)建適應(yīng)互聯(lián)網(wǎng)時(shí)代的移動終端可信環(huán)境 , 充分利用可信計(jì)算 、 安全多方計(jì)算 、 密碼算法 、 生物識別等信息技術(shù),建立健全兼顧安全與便捷的多元化身份認(rèn)證體系 , 不斷豐富金融交易驗(yàn)證手段,保障移動互聯(lián)環(huán)境下金融交易安全 , 提升金融服務(wù)的可得性 、 滿意度與安全水平 。

    同時(shí) , 《 規(guī)劃 》 也提出強(qiáng)化需求引領(lǐng)作用 , 主動適應(yīng)數(shù)字經(jīng)濟(jì)環(huán)境下市場需求的快速變化 , 在保障客戶信息安全的前提下 , 利用大數(shù)據(jù) 、 物聯(lián)網(wǎng)等技術(shù)分析客戶金融需求 , 借助機(jī)器學(xué)習(xí) 、 生物識別 、 自然語言處理等新一代人工智能技術(shù) , 提升金融多媒體數(shù)據(jù)處理與理解能力 , 打造 “ 看憧文字 ” 、 “ 聽懂語言 ” 的智能金融產(chǎn)品與服務(wù) , 這也為人臉識別的安全應(yīng)用提供了思路 。

    2019 年 9 月 , 工業(yè)和信息化部公開征求對 《 關(guān)于促進(jìn)網(wǎng)絡(luò)安全產(chǎn)業(yè)發(fā)展的指導(dǎo)意見 》 ( 征求意見稿 ) , 表示支持構(gòu)建基于商用密碼 、 指紋識別 、 人臉識別等技術(shù)的網(wǎng)絡(luò)身份認(rèn)證體系 , 著力提升支撐網(wǎng)絡(luò)安全管理 、 應(yīng)對有組織高強(qiáng)度攻擊的能力 , 明確了生物特征識別技術(shù)在網(wǎng)絡(luò)安全產(chǎn)業(yè)發(fā)展中的重要意義 。

    2020 年 11 月初 《 中華人民共和國國民經(jīng)濟(jì)和社會發(fā)展第十四個(gè)五年規(guī)劃綱要 ( 建議稿 ) 》 ( 以下簡稱 《 建議稿 》 ) 全文發(fā)布 , 其中明確提出加快壯大新一代信息技術(shù) 、 生物技術(shù)等產(chǎn)業(yè) , 推動互聯(lián)網(wǎng) 、 大數(shù)據(jù) 、 人工智能等同各產(chǎn)業(yè)深度融合 , 培育新技術(shù) 、 新產(chǎn)品 、 新業(yè)態(tài) 、 新模式 。

    發(fā)展數(shù)字經(jīng)濟(jì) , 加強(qiáng)數(shù)字社會 、 數(shù)字政府建設(shè) , 提升公共服務(wù) , 社會治理等數(shù)字化智能水平 。同時(shí)提出 , 統(tǒng)籌發(fā)展和安全 , 建設(shè)更高水平的平安中國 , 加強(qiáng)社會治安防控體系建設(shè) 。該規(guī)劃的出臺為人臉識別技術(shù)和行業(yè)未來 5 年的發(fā)展規(guī)定了目標(biāo)和方向 。

    信息安全層面 , 2016 年 11 月全國人大通過的 《 網(wǎng)絡(luò)安全法 》 中將個(gè)人生物識別信息的管理進(jìn)一步細(xì)化 , 范圍進(jìn)一步明確 。國家網(wǎng)信辦有關(guān)負(fù)責(zé)人表示,《 網(wǎng)絡(luò)安全法 》 的公布和施行不僅保障廣大群眾的切身利益 , 還有利于高新技術(shù)的應(yīng)用 , 進(jìn)而激發(fā)互聯(lián)網(wǎng)的巨大潛力 。

    2020 年 7 月由全國人大公布的 《 數(shù)據(jù)安全法 》 草案為數(shù)據(jù)加上 “ 防護(hù)罩 ” , 明確數(shù)據(jù)活動的紅線 , 將來在 “ 數(shù)據(jù)主權(quán) 、 數(shù)據(jù)經(jīng)營 、 數(shù)據(jù)交易 ” 等方面 , 通過法律條文的形式 , 推動數(shù)據(jù)時(shí)代的快速發(fā)展 。國家堅(jiān)持保障數(shù)據(jù)安全與發(fā)展并重 , 鼓勵研發(fā)數(shù)據(jù)安全保護(hù)技術(shù) ,積極推進(jìn)數(shù)據(jù)資源開發(fā)利用 , 保障數(shù)據(jù)依法有序自由流動 。

    2020 年 10 月 21日全國人大公布的 《 個(gè)人信息保護(hù)法 ( 草案 ) 》 規(guī)定了個(gè)人信息是以電子或者其他方式記錄的與已識別或者可識別的自然人有關(guān)的各種信息 ;規(guī)定了個(gè)人信息的處理包括個(gè)人信息的收集 、 存儲 、 使用 、 加工 、 傳輸 、 提供 、 公開等活動的要求 。

    02.

    技術(shù)細(xì)節(jié)

    1、 人臉識別技術(shù)原理

    當(dāng)今主流的人臉識別算法 , 主要包括人臉檢測 、 人臉預(yù)處理 、 特征項(xiàng)提取 、比對識別 、 活體鑒別五大步驟 。其中人臉檢測 、 人臉預(yù)處理 、 特征項(xiàng)提取可統(tǒng)稱為人臉視圖解析過程 , 即從視頻和圖像中檢測出人臉 , 通過圖像質(zhì)量判斷 ,選取合適的人臉圖片 , 提取人臉特征向量 , 用于后續(xù)比對識別 ;比對識別處理可以分為人臉驗(yàn)證 ( 1 :1 ) 和人臉辨識 ( 1 :N ) 兩類 ;活體鑒別算法用以判斷人臉識別處理中的人臉圖像 , 是否采集自真實(shí)人體 。

    在實(shí)際應(yīng)用中 , 除了上述人臉識別算法 , 前端視圖采集技術(shù) 、 人臉數(shù)據(jù)存儲技術(shù) 、 應(yīng)用軟件管理技術(shù)也是人臉識別技術(shù)應(yīng)用中重要的技術(shù)部分 。

    2、 人臉識別的研究機(jī)構(gòu)介紹

    人臉識別作為最受關(guān)注的生物特征識別技術(shù) , 國內(nèi)外有眾多科研院所 、 高等院校 、 企業(yè)等機(jī)構(gòu)開展人臉識別相關(guān)技術(shù)的研究 、 開發(fā)和應(yīng)用 。截止 2020年 10 月 , 據(jù)企查查數(shù)據(jù)統(tǒng)計(jì) , 全國共有 10443 家企業(yè)的名稱 、 產(chǎn)品 、 品牌 、經(jīng)營范圍涵蓋 “ 人臉識別 ” , 從成立時(shí)間來看 , 近 5 年相關(guān)企業(yè)數(shù)量不斷劇增 ,2019 年成立了 1955 家,2020 年僅 10 月前就新增 1139 家 。

    科研機(jī)構(gòu)。人臉識別技術(shù)廣受學(xué)術(shù)和產(chǎn)業(yè)研究機(jī)構(gòu)關(guān)注 。全球范圍內(nèi) , 有眾多知名學(xué)術(shù)機(jī)構(gòu)在從事人臉識別領(lǐng)域的技術(shù)研究 , 比較有代表性的人臉識別技術(shù)研究機(jī)構(gòu)包括斯坦福大學(xué) 、 加州大學(xué)伯克利分校 、 美國馬薩諸塞大學(xué) 、 牛津大學(xué) 、 多倫多大學(xué) 、 香港中文大學(xué) 、 中科院自動化所 、 清華大學(xué)等 。

    (1)、斯坦福大學(xué)。斯坦福大學(xué)是最早在人臉識別技術(shù)上取得突破的研究機(jī)構(gòu)之一 。由華人科學(xué)家李飛飛教授領(lǐng)街的計(jì)算機(jī)視覺實(shí)驗(yàn)室 , 通過每年度基于 ImageNet 數(shù)據(jù)庫舉辦的大規(guī)模視覺識別挑戰(zhàn)賽 ( ILSVRC) , 極大的促進(jìn)了人臉識別和計(jì)算機(jī)視覺技術(shù)的發(fā)展 。

    近期 , 斯坦福大學(xué)的研究團(tuán)隊(duì)研發(fā)出一款人臉跟蹤軟件 Face2Face, 它可以通過攝像頭捕捉用戶的動作和面部表情 , 然后使用 Face2Face 軟件驅(qū)動視頻中的目標(biāo)人物做出一模一樣的動作和表情 , 效果極其逼真 。這項(xiàng)技術(shù)使用一種密集光度一致性方法 (dense photometric consistency measure) 來實(shí)時(shí)跟蹤源和目標(biāo)視頻中的面部表情 。

    研究人員們稱 ,由于源素材與被拍攝者之間快速而有效的變形傳遞 , 從而使復(fù)制面部表情成為可能 。由于嘴形與其所說的內(nèi)容高度匹配 , 因此可以產(chǎn)生非常準(zhǔn)確 、 可信的契合 。

    (2)、加州大學(xué)伯克利分校。加州大學(xué)伯克利分校是國外人臉識別技術(shù)研究的重要發(fā)源地 , 早在 2005年就有關(guān)于人臉識別相關(guān)研究的理論工作 。其中馬毅 2008 年發(fā)表的 Sparsity and Robustness in Face Recognition, 在谷歌學(xué)術(shù)已獲得 6321 余次的引用 , 在深度神經(jīng)網(wǎng)絡(luò)被大家廣泛應(yīng)用之前 , 是主流的人臉識別算法 。在這篇文章中作者把稀疏表示理論應(yīng)用到人臉識別這個(gè)場景中 , 提出了一個(gè)通用分類算法用于人臉識別 。

    這個(gè)新的框架為人臉識別領(lǐng)域的兩個(gè)關(guān)鍵課題(特征項(xiàng)提取和對遮擋的魯棒性)上提供了更好的理論指導(dǎo)。此外,該實(shí)驗(yàn)室近期在用低維模型處理高維數(shù)據(jù)、 特征選擇等理論方向上有一定的產(chǎn)出, 提出了一種新型特征選擇方法 (Conditional Covariance Minimization, CCM) , 該方法基于最小化條件協(xié)方差算子的跡來進(jìn)行特征選擇, 取得了較為突出的效果 。

    (3)、美國馬薩諸塞大學(xué)。美國馬薩諸塞大學(xué)也是國外人臉識別技術(shù)研究的重要發(fā)源地 , 開源了知名的人臉檢測數(shù)據(jù)庫 FDDB 和人臉識別數(shù)據(jù)集 LFWo FDDB 是全世界最具權(quán)威的人臉檢測評測平臺之一 , 其中包含 2845 張圖片 , 共有 5171 個(gè)人臉作為測試集 。測試集范圍包括不同姿勢 、 不同分辨率 、 旋轉(zhuǎn)和遮擋等圖片 , 同時(shí)包括灰度圖和彩色圖 , 截止到目前 FDDB 所公布的評測集仍然代表了目前人臉檢測的世界最高水平 。

    馬薩諸塞大學(xué)還在 2007 年建立了人臉識別評測數(shù)據(jù)集 LFW, 用于評測非約束條件下的人臉識別算法性能 , 截至到目前是人臉識別領(lǐng)域使用最廣泛的評測集合 。該數(shù)據(jù)集由 13000 多張全世界知名人士互聯(lián)網(wǎng)自然場景不同朝向 、 表情和光照環(huán)境人臉圖片組成 , 共 5000 多人 , 其中 1680 人有 2 張或 2張以上人臉圖片 。每張人臉圖片都有其唯一的姓名 ID 和序號加以區(qū)分 。LFW測試正確率 , 代表了人臉識別算法在處理不同種族 、 光線 、 角度 、 遮擋等情況下識別人臉的綜合能力。

    (4)、牛津大學(xué)。牛津大學(xué) VGG (視覺幾何)組實(shí)驗(yàn)室從 2015 年開始人臉識別相關(guān)研究 ,包括具有影響力的人臉數(shù)據(jù)庫的發(fā)布以及深度人臉識別算法的研究 。該實(shí)驗(yàn)室 2015 年在 BMVC 發(fā)表的 a Deep Face Recognition" 論文在谷歌學(xué)術(shù)已獲得3600 余次的引用 , 其中發(fā)布的 VGG-Face 已成為深度人臉識別領(lǐng)域最常用的數(shù)據(jù)庫之 一 。

    2018 年發(fā)布了大規(guī)模人臉識別數(shù)據(jù) VGG — Face2, 是 VGG-Face的第二個(gè)版本 , 包含 331 萬圖片 , 9131 個(gè) ID, 平均圖片數(shù)為 362.6, 且覆蓋了大范圍的姿態(tài) 、 年齡和種族等 。VGG-Face2 發(fā)布兩年 , 已經(jīng)獲得了 800 余次引用 。此外 , 該實(shí)驗(yàn)室近期在人臉識別置信度預(yù)測 、 基于集合的人臉識別等子方向上 , 每年產(chǎn)出一定量的學(xué)術(shù)工作 。

    (5)、多倫多大學(xué)。加拿大多倫多大學(xué)是基于深度學(xué)習(xí)的人臉識別技術(shù)發(fā)展的重要推手之一 。著名 “ 神經(jīng)網(wǎng)絡(luò)之父 ” Geoffrey Hinton 是該校的代表性學(xué)者 , 在 Hinton 的帶領(lǐng)下 ,多倫多大學(xué)的研究者將反向傳播 (Back Propagation) 算法應(yīng)用到神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí) , 通過應(yīng)用這項(xiàng)算法技術(shù) , 人臉識別技術(shù)的識別性能得到極大提高 。

    近期 , 多倫多大學(xué)的研究人員在人臉識別隱私保護(hù)技術(shù)領(lǐng)域取到了一些新的進(jìn)展 , 開發(fā)了一種動態(tài)干擾算法來進(jìn)行人臉隱私保護(hù) 。這種技術(shù)原理基于 “ 對抗性訓(xùn)練 ” , 通過建立起兩種相互對抗的算法 , 當(dāng)發(fā)現(xiàn)某種檢測算法正在尋找臉部特征 , 干擾算法會自動調(diào)整這些特征 , 在照片中產(chǎn)生非常細(xì)微的干擾 , 通過這些干擾來阻礙整個(gè)檢測系統(tǒng)的檢測效果 。

    (6)、香港中文大學(xué)。作為最早投入深度學(xué)習(xí)技術(shù)研發(fā)的華人團(tuán)隊(duì) , 在多年布局的關(guān)鍵技術(shù)基礎(chǔ)之上 , 香港中文大學(xué)教授湯曉鷗率領(lǐng)的團(tuán)隊(duì)迅速取得技術(shù)突破 。2012 年國際計(jì)算視覺與模式識別會議 ( CVPR ) 上僅有的兩篇深度學(xué)習(xí)文章均出自其實(shí)驗(yàn)室 ;2011-2013 年間在計(jì)算機(jī)視覺領(lǐng)域兩大頂級會議 ICCV 和 CVPR 上發(fā)表了 14 篇深度學(xué)習(xí)論文 , 占據(jù)全世界在這兩個(gè)會議上深度學(xué)習(xí)論文總數(shù) ( 29 篇)的近一半 。他在 2009 年獲得計(jì)算機(jī)視覺領(lǐng)域兩大最頂尖的國際學(xué)術(shù)會議之一 CVPR最佳論文獎 , 這是 CVPR 歷史上來自亞洲的論文首次獲獎 。

    (7)、中科院自動化所。中科院自動化所是國內(nèi)領(lǐng)先的模式識別領(lǐng)域研究機(jī)構(gòu) 。多年來 , 在人臉識別領(lǐng)域開展了廣泛的研究 。自動化所李子青研究員領(lǐng)導(dǎo)的人臉識別研究團(tuán)隊(duì) ,提出了基于近紅外的人臉識別技術(shù) , 對光照變化影響的處理有較好的效果 ,并將該技術(shù)應(yīng)用于 2008 年北京奧運(yùn)會安保項(xiàng)目 。

    自動化所孫哲南研究員團(tuán)隊(duì) , 在生成對抗網(wǎng)絡(luò)基礎(chǔ)上提出高保真度的姿態(tài)不變模型 (High Fidelity Pose Invariant Model, HF — PIM) 來克服人臉識別任務(wù)中最為經(jīng)典的姿態(tài)不一致問題 。實(shí)驗(yàn)結(jié)果表明 , 該方法在基準(zhǔn)數(shù)據(jù)集上的表現(xiàn)的視覺效果和定量性能指標(biāo)都優(yōu)于目前最好的基于對抗生成網(wǎng)絡(luò)的方法 。此外 , HF-PIM 所支持的生成圖像分辨率也在原有方法的基礎(chǔ)上提升了一倍 。

    (8)、清華大學(xué)。清華大學(xué)是國內(nèi)最早從事人臉識別技術(shù)研究的研究機(jī)構(gòu)之一 。清華大學(xué)蘇光大教授 , 自 1980 年代就開始了人臉識別技術(shù)研究工作 。蘇教授提出了 1 :1 圖像采樣理論和鄰域圖像并行處理機(jī)理論 , 并在 2005 年通過多計(jì)算機(jī)并行處理技術(shù) , 顯著提高了人臉識別處理的性能 。

    這項(xiàng)技術(shù)與 2012 年由多倫多大學(xué) Hinton 團(tuán)隊(duì)提出的利用并行計(jì)算來提高反向傳播算法的運(yùn)算效能有異曲同工之妙 。同時(shí) , 蘇教授團(tuán)隊(duì)提出了最佳二維人臉 、 不同類別的多特征描述以及MMP — PCA 等一系列人臉識別的理論和方法 。

    科技類企業(yè)。在人臉識別技術(shù)研究領(lǐng)域 , 眾多科技類企業(yè)也起到了至關(guān)重要的作用 。微軟亞洲研究院較早就開始了人臉識別技術(shù)研究 , 發(fā)表了大量優(yōu)秀的學(xué)術(shù)論文 ,2018 年 , 微軟亞洲研究院提出的深度學(xué)習(xí)殘差網(wǎng)絡(luò) RESNET, 在研究領(lǐng)域得到了廣泛認(rèn)可 ;蘋果公司在人臉識別技術(shù)上進(jìn)行了深入研究 , 自 2017 年開始 ,就在其 iphoneX 手機(jī)上引入了刷臉解鎖功能 ;

    日本電氣 (NEC) 公司也是國際上人臉識別技術(shù)的先 行者之 一 , 很早就提出了基于人臉識別技術(shù)的公共安全解決方案 ;

    國內(nèi)有 “ 人工智能四小龍 ” 之稱商湯 、 曠視、 依圖 、 云從等企業(yè) , 在人臉領(lǐng)域 , 從學(xué)術(shù)研究到產(chǎn)業(yè)實(shí)踐 , 都做了大量的工作 , 在復(fù)雜場景 , 大規(guī)模處理等領(lǐng)域 , 不斷取得新的成果 ;國內(nèi)傳統(tǒng)科技企業(yè)百度 、 阿里 、 騰訊 、 平安科技 、 ???、 大華等 , 也在人臉識別技術(shù)領(lǐng)域開展廣泛深入的研究 , 并結(jié)合其原有的業(yè)務(wù)領(lǐng)域的場景 , 取得顯著的技術(shù)研究成果 。

    3、人臉識別技術(shù)優(yōu)勢及局限性

    技術(shù)優(yōu)勢。在不同的生物特征識別方法中 , 人臉識別技術(shù)有其自身特殊的優(yōu)勢 , 因而在生物識別中有著重要的地位 。

    (1)、 非侵?jǐn)_性 , 人臉識別無需干擾人們的正常行為就能較好地達(dá)到識別效果 , 只要在攝像機(jī)前自然地停留片刻 , 用戶的身份就會被正確識別 。

    (2)、便捷性 , 人臉識別采集設(shè)備簡單 , 使用快捷 。一般來說 , 常見的攝像頭就可以用來進(jìn)行人臉圖像的采集 , 不需特別復(fù)雜的專用設(shè)備 。圖像采集在數(shù)秒內(nèi)即可完成 。

    (3)、友好性 , 通過人臉識別身份的方法與人類的習(xí)慣一致 , 人和機(jī)器都可以使用人臉圖片進(jìn)行識別 。

    (4)、非接觸性 , 人臉圖像采集 , 用戶不需要與設(shè)備直接接觸 。另外 , 可以在比較遠(yuǎn)的距離進(jìn)行人臉圖像的采集 。裝配了光學(xué)變焦鏡頭的攝像頭 , 焦距可以提高到 10 倍以上 , 使景深范圍擴(kuò)展到 50 米以外 , 實(shí)現(xiàn)對遠(yuǎn)景清晰拍照 ,有效采集遠(yuǎn)處的人臉圖像 。

    (5)、可擴(kuò)展性 , 在人臉識別后 , 通過對識別結(jié)果數(shù)據(jù)進(jìn)行下一步處理和應(yīng)用 , 可以擴(kuò)展出眾多實(shí)際應(yīng)用方案 , 如應(yīng)用在出入門禁控制 、 人臉圖片搜索 、上下班刷卡 、 非法人員識別等各個(gè)領(lǐng)域 。

    (6)、隱蔽性強(qiáng) , 安全領(lǐng)域?qū)τ谙到y(tǒng)隱蔽性有較強(qiáng)要求 , 人臉識別在這方面比指紋等方式更具優(yōu)勢 。

    (7)、強(qiáng)大的事后追蹤能力 , 系統(tǒng)記錄的人臉信息是非常重要且易于利用的線索 , 更加有利于進(jìn)行事后追蹤應(yīng)用 。

    (8)、準(zhǔn)確度高 , 相比于人體 、 步態(tài)等其特征 , 人臉特征具備更強(qiáng)的鑒別性與更低的誤報(bào)率 , 所能應(yīng)用的底庫規(guī)模上高出許多 , 目前超大規(guī)模 ( 十億級別 ) 的人臉檢索已經(jīng)可以實(shí)用 。

    技術(shù)局限。人臉識別技術(shù)由于相似臉 、 年齡 、 算法偏見 、 面臨的場景多樣化以及人臉圖像更易公開獲取等原因 , 技術(shù)本身也面臨著一定的局限性 。

    (1)、相似臉較難解決 。雙胞胎或者長相很相近的人臉容易識別錯誤 , 而該問題在目前暫時(shí)沒有新技術(shù)能完全解決 。NIST 分析報(bào)告指出 , 大部分情況下雙胞胎仍能區(qū)分分?jǐn)?shù)高低 , 但是往往都在閾值之上 , 在開放環(huán)境下應(yīng)用效果較差 。

    (2)、算法偏見問題 。由于當(dāng)前人臉識別算法很大程度依賴于數(shù)據(jù)樣本 ,但是不同人群的人臉數(shù)據(jù)樣本存在差別 , 這導(dǎo)致了算法對不同地域 、 不同年齡人群的識別能力有差別 。

    美國國家技術(shù)標(biāo)準(zhǔn)研究院 NIST 的檢查表明 , 人臉識別軟件在不同地域 、 種族 、 性別 、 年齡上存在較大差異 。比如 , 小孩子 , 老年人以及其他很少出現(xiàn)的人種或者膚色的人臉識別率相對較低 , 該問題亟需解決 。

    (3)、人臉識別率易受多種因素影響 ?,F(xiàn)有的人臉識別系統(tǒng)在用戶配合 、采集條件比較理想的情況下可以取得令人滿意的結(jié)果 。但是 , 在用戶不配合 、采集條件不理想的情況下 , 會影響現(xiàn)有系統(tǒng)的識別率 。例如根據(jù) NIST 的測試報(bào)告 , 戴口罩情況下大部分算法的錯誤率會提高 1 個(gè)數(shù)量級以上 , 跨年齡 、 大角度等因素也會造成不同程度的下降 。

    (4)、年齡變化的影響 。隨著年齡的變化 , 面部外觀也會變化 , 特別是對于青少年 , 這種變化更加明顯 。對于不同的年齡段 , 人臉識別算法的識別率也不同。

    (5)、安全性問題 。人臉識別系統(tǒng)信息存儲同樣會面臨黑客的攻擊 。所以對數(shù)據(jù)加密很重要 。隨著技術(shù)的不斷提升 , 人臉識別技術(shù)在安全性上需要加強(qiáng) 。

    同時(shí) , 人臉暴露度較高 , 相比對其它生物特征數(shù)據(jù)更容易實(shí)現(xiàn)被動采集 。這也同時(shí)意味著人臉信息的數(shù)據(jù)更容易被竊取 , 不僅可能侵犯個(gè)人隱私 , 還會帶來財(cái)產(chǎn)損失 。大規(guī)模的數(shù)據(jù)庫泄露還會對一個(gè)族群或國家?guī)戆踩L(fēng)險(xiǎn) 。

    2020人臉識別報(bào)告:上萬家企業(yè)入局,八大技術(shù)六個(gè)趨勢一文看盡

    4、 人臉識別技術(shù)的發(fā)展趨勢

    隨著人臉識別技術(shù)的廣泛應(yīng)用 , 也在不斷促進(jìn)技術(shù)本身持續(xù)發(fā)展 ?;A(chǔ)算法研究 、 人臉重建技術(shù) 、 戴口罩人臉識別 、 3D 人臉識別技術(shù) 、 新型人臉采集技術(shù) 、人臉聚類技術(shù) 、 和低質(zhì)量人臉識別技術(shù) , 是產(chǎn)業(yè)界和學(xué)術(shù)界關(guān)注的熱點(diǎn)課題 ,也預(yù)示了人臉識別技術(shù)的發(fā)展趨勢 。

    基礎(chǔ)算法技術(shù)熱點(diǎn)包括模型結(jié)構(gòu)設(shè)計(jì) 、 損失函數(shù)設(shè)計(jì) 、 無監(jiān)督 / 半監(jiān)督學(xué)習(xí)算法和分布式自學(xué)習(xí)算法等 。模型結(jié)構(gòu)設(shè)計(jì)目前主要有手工設(shè)計(jì)與網(wǎng)絡(luò)結(jié)構(gòu)搜索 (NAS) 兩種思路 。ICCV 2019 輕量級人臉識別 (Lightweight Face Recognition) 競賽結(jié)果顯示 , 雖然對大模型場景下結(jié)構(gòu)改進(jìn)帶來的提升則較為有限 , 但是輕量級場景下網(wǎng)絡(luò)結(jié)構(gòu)改進(jìn)對于識別率提升較為明顯 。

    損失函數(shù)設(shè)計(jì)的核心在于學(xué)習(xí)具備鑒別性且足夠魯棒的特征 。近年來基于度量學(xué)習(xí)與各類 margin — based 方法逐漸成為主流。在特征提取加速方面 , 主要的方法有輕量級網(wǎng)絡(luò) 、 模型蒸惚 、 稀疏量化等 ;在特征比對加速方面 , 主要的思路有量化以及各類近似最近鄰檢索技術(shù) 。

    低質(zhì)量人臉識別技術(shù)。在實(shí)際的動態(tài)應(yīng)用場景下 , 人臉識別技術(shù)由于場景的不可控因素 , 采集到的圖片質(zhì)量與訓(xùn)練圖片的質(zhì)量有很大差異 , 如人臉偏轉(zhuǎn) , 大幅度側(cè)臉 ;運(yùn)動模糊和失焦模糊 ;遮擋物(例如口罩 , 墨鏡) ;低的光照強(qiáng)度和對比度 ;視頻傳輸由于編解碼過程產(chǎn)生的人臉信息丟失等 , 這些因素導(dǎo)致準(zhǔn)確率極度下降 。

    針對這些具體問題 , 研究人員提出綜合利用各種圖像增強(qiáng)技術(shù)和圖像生成技術(shù)對人臉識別算法準(zhǔn)確率進(jìn)行提升的方法 , 如采用對抗式生成網(wǎng)絡(luò)對攝像頭的風(fēng)格進(jìn)行遷移 , 采用基于深度學(xué)習(xí)的方法對小尺寸模糊人臉進(jìn)行超分辨率重建和基于注意力機(jī)制對人臉圖片進(jìn)行去模糊處理等 。

    此外 , 3D 人臉識別技術(shù)也可以有效解決復(fù)雜場景下人臉單模態(tài)魯棒性不足問題 , 如大角度 、 遮擋引起的效果下降問題 , 常用的融合策略有相似度融合 、 特征融合 、 決策融合等 。

    戴口罩人臉識別技術(shù)。今年新型冠狀病毒疫情期間戴口罩人臉識別受到較大關(guān)注 。常用的解決方法有數(shù)據(jù)增強(qiáng) 、 遮擋恢復(fù) 、 多部件模型融合等 , 可應(yīng)用在人臉布控 、 陌生人檢測 、 無感通行中 , 均不需要摘下口罩 , 在 30 萬人像庫的規(guī)模下 , 戴口罩人臉識別準(zhǔn)確率可大于 90% 。

    人臉聚類無論是在個(gè)人領(lǐng)域的相集管理還是在智慧城市治理領(lǐng)域都有較為廣泛的應(yīng)用 。早期主要基于傳統(tǒng)的聚類方法如 k-means 等 , 但效果不佳 。近年來 , 基于 GCN 的人臉聚類方法嶄露頭角 。實(shí)際業(yè)務(wù)中 , 時(shí)空信息的挖掘也是研究的熱點(diǎn) 。

    特定群體識別技術(shù)。針對兒童/老人 、 不同膚色群體的人臉識別 , 有標(biāo)簽的數(shù)據(jù)較少 , 而無標(biāo)簽的數(shù)據(jù)更多些 。研究人員提出可以利用半監(jiān)督/無監(jiān)督學(xué)習(xí)方法帶來性能的進(jìn)一步提升 。同時(shí) , 對抗 、 域適應(yīng)等方法也是研究人員較為關(guān)注的方法 。在特定群體識別中 , 應(yīng)考慮如何方便老年人使用人臉識別系統(tǒng) 。

    為了防范照片 、 視頻 、 頭模等假體對人臉識別系統(tǒng)的攻擊 , 呈現(xiàn)攻擊檢測算法也是研究的熱點(diǎn) , 主要檢測原理包括 :

    a ) 離散圖像檢測方式 , 即利用一幅或多幅圖像進(jìn)行判斷 ;

    b ) 連續(xù)圖像檢測方式 , 即采用連續(xù)圖像序列進(jìn)行判斷,如檢測顯示器邊緣 、 邊框 、 屏幕反光 、 像素點(diǎn) 、 條紋分析等進(jìn)行判斷 ;

    c ) 用戶主動配合檢測方式 , 即通過指令要求用戶完成相應(yīng)動作如點(diǎn)頭 、 抬頭 、左右轉(zhuǎn)頭 、 張嘴 、 眨眼 、 跟讀屏顯提示信息等進(jìn)行判斷 ;

    d ) 基于輔助硬件設(shè)備的檢測方式 , 即利用輔助硬件設(shè)備獲取更多判斷依據(jù)輔助進(jìn)行判斷 , 如利用深度攝像頭采集人臉深度信息或利用特定波長光源投射并檢測在皮膚或非皮膚材質(zhì)上產(chǎn)生的發(fā)射率差異等 ;

    e ) 用戶被動配合檢測方式 , 如 :利用靜脈血管 、 肌肉 、骨骼 、 靜脈血液中脫氧血色素對紅外線的吸收特性 , 判斷其是否來自活體 ;通過特定指令引導(dǎo)用戶眼球運(yùn)動 , 并通過跟蹤眼球運(yùn)動以判斷是否為真實(shí)活體 。

    多模態(tài)融合識別技術(shù)。多模態(tài)融合識別技術(shù)可以有效解決復(fù)雜場景下人臉單模態(tài)魯棒性不足問題 。如大角度 、 遮擋 、 像素過低引起的效果下降問題或應(yīng)用場景對于安全性可靠性要求很高的場景 , 多模態(tài)可以增強(qiáng)識別的可信度 。

    多模態(tài)識別有兩個(gè)發(fā)展方向 , 一個(gè)方向是在臉部圖像特征識別的基礎(chǔ)上 , 增加頭肩和形體的識別 , 這種技術(shù)的好處是可以不必增加額外的采集單元 ;另外一個(gè)方向是 , 融合其他生物識別模態(tài) , 如靜脈紋理 , 聲紋信息等 , 這種技術(shù)除了能夠提高算法的魯棒性之外 , 還可以提高活體驗(yàn)證的可信度 , 在行業(yè)里受到了較為廣泛的關(guān)注 。

    03.

    行業(yè)發(fā)展

    1、行業(yè)發(fā)展概述

    隨著云計(jì)算 、 大數(shù)據(jù) 、 物聯(lián)網(wǎng) 、 人工智能等計(jì)算機(jī)科學(xué)技術(shù)的飛速發(fā)展以及人臉識別技術(shù)在實(shí)際應(yīng)用中的不斷成熟 , 人臉識別技術(shù)在智慧安防 、 智慧城市 、 智能家居 、 移動支付等領(lǐng)域繼續(xù)大放異彩 , 并且人臉識別的一些新應(yīng)用場景也不斷地被挖掘出來 。

    全球人臉識別行業(yè)規(guī)模依然在以非常高的速度進(jìn)行增長 。根據(jù)MarketsandMarkets 發(fā)布的全球人臉識別市場相關(guān)報(bào)告 , 預(yù)計(jì)全球人臉識別市場規(guī)模將從 2019 的 32 億美元增長到 2024 年的 79 億美元 , 在預(yù)測期內(nèi)( 201 9-2024 年 ) 將以 16.6% 的復(fù)合年增長率進(jìn)行增長 。

    國內(nèi)方面 , 中國人臉識別技術(shù)投入在 2017-2018 年達(dá)到巔峰 , 根據(jù) IHSMarkit 的數(shù)據(jù) , 2018 年 , 中國在全球人臉識別市場的業(yè)務(wù)占據(jù)了將近一半的份額 。2019 至 2020 年 , 人臉識別技術(shù)發(fā)展趨于平緩 , 進(jìn)入理智期 。依據(jù) IT 桔子數(shù)據(jù)統(tǒng)計(jì) , 截至目前 , 中國人臉識別技術(shù)總投資額達(dá)到 406 億元 。前瞻產(chǎn)業(yè)研究院預(yù)計(jì) , 未來五年人臉識別市場規(guī)模將保持 23% 的平均復(fù)合增長速度 ,到 2024 年市場規(guī)模將突破 100 億元 。

    2、 行業(yè)發(fā)展現(xiàn)狀

    人臉識別產(chǎn)業(yè)鏈以人臉識別算法作為中間層 , 其上游為器件 、 通用硬件 、基礎(chǔ)軟件 , 上游提供了人臉識別算法的輸入 、 訓(xùn)練 、 開發(fā)和運(yùn)行環(huán)境 ;下游為設(shè)備和產(chǎn)品 , 最終體現(xiàn)為解決方案 , 下游是人臉識別算法的產(chǎn)品形態(tài) 。

    從產(chǎn)業(yè)鏈上游來看 , 國內(nèi)廠商 ( 以華為 、 寒武紀(jì)為代表 ) 在芯片設(shè)計(jì)方面有較強(qiáng)實(shí)力 , 在芯片制造方面 , 除去手機(jī)等對芯片精密程度要求較高的設(shè)備 ,國內(nèi)廠商具備制造芯片的能力 。但高端芯片的制造工藝以及基本元器件都被國外壟斷 , 成為制約上游廠商發(fā)展的瓶頸 。

    從人臉識別算法層面來看 , 國內(nèi)廠商具備優(yōu)勢 , 但數(shù)據(jù)隱私問題 、 人種 /地域帶來的算法性能公平性問題 , 是國內(nèi)廠商急需解決的問題 。

    產(chǎn)業(yè)鏈下游 , 人臉識別應(yīng)用越來越廣泛 , 甚至出現(xiàn)過度濫用盜取用戶隱私的事件 。黑客攻擊 、 非活體攻擊對人臉識別系統(tǒng)安全性也提出了挑戰(zhàn) , 用戶隱私保護(hù)和安全性成為掣肘 , 急需相關(guān)政策法規(guī)來規(guī)范市場 。

    基礎(chǔ)器件:

    通用處理器。目前 , 通用處理器主要包括 x86 、 ARM 、 RISC — V 三大系列 。x86 處理器仍是服務(wù)器端主處理器的首選 。出于穩(wěn)定性考慮 , Intel 的 xeon 系列占據(jù)了市場的主導(dǎo)地位 , AMD 鮮有應(yīng)用 , 反而國內(nèi)的海光 、 兆芯的 x86 處理器因國產(chǎn)化替代等原因得到了少量的份額 。ARM 處理器是手機(jī)等智能終端的首選 , 隨著性能提升和軟件生態(tài)的完善 , ARM 處理器也逐漸向服務(wù)器擴(kuò)張 , ARM 公司也推出了一系列高性能核心和 Server Reday 認(rèn)證支持這一舉措 。

    應(yīng)用于智能終端的 ARM 芯片的代表包括海思的麒麟系列 、 高通的驍龍系列 、 聯(lián)發(fā)科的 MTK 和瑞芯微的 RK 等 ;應(yīng)用于服務(wù)端的 ARM 芯片的代表包括海思的鯉鵬芯片和飛騰的騰云 S 系列等 。RISC V 是開源的處理器架構(gòu) , 隨著美國對中國高科技領(lǐng)域的打壓 , 該架構(gòu)也成為國產(chǎn)化的重要選擇 。

    平頭哥推出的鉉鐵 910 芯片就是采用RISC — V 架構(gòu) , 中天微和小米松果電子也在做 RISC-V 的相關(guān)工作 。國內(nèi)主流的通用處理器還包括采用 MISP 架構(gòu)的龍芯和采用 Alpha 架構(gòu)的申威 ??傮w來說,在通用處理器領(lǐng)域的選擇相對豐富 , 以海思為代表的國內(nèi)芯片設(shè)計(jì)公司已經(jīng)走到與國外老牌芯片設(shè)計(jì)公司對等的位置 , 主要問題在于先進(jìn)制程的芯片代工制造的風(fēng)險(xiǎn) 。

    AI 加速 SOC。與采用 GPU 的通用并行計(jì)算不同 , AI 加速 SOC 是通過內(nèi)置專門針對 AI 算法設(shè)計(jì)的加速單元 , 實(shí)現(xiàn)針對 AI 的高運(yùn)算效率 , 隨著人工智能落地快速崛起的專用芯片 。

    NVIDIA 最早針對 GPU 通用并行計(jì)算建立了 CUDA 生態(tài)環(huán)境 , 使其成為 AI 落地最大的算力提供商 , 也在 AI 進(jìn)一步發(fā)展階段 , 適時(shí)推出了面向張量運(yùn)算的 TensorCore 和面向深度學(xué)習(xí)的 NVDLA 加速單元 , 進(jìn)一步鞏固了其在 AI 加速領(lǐng)域的地位 。Google 依賴其軟件優(yōu)勢 , 推出了與 Tensorflow 緊密結(jié)合的 TPU, 但是除了 Google 大規(guī)模使用外 , 并沒有得到市場的廣泛應(yīng)用。

    海思在 AI 加速領(lǐng)域也是頗有建樹 , 先后推出了 hisi 35xx 系列芯片和昇騰系列芯片 。定位端側(cè)的 hisi 35xx 系列 Al 加速芯片主張圖像 +AI 合一 SOC 設(shè)計(jì),能提供 0.5TOPS ? 4TOPS 不等的算力 , 在平安城市 、 交通 、 電力 、 人臉門禁 、車載等市場廣受青睞 ;定位邊緣側(cè)和云中心的昇騰系列 AI 加速芯片能夠提供16TOPS-512TOPS 不等的算力 , 具有算力高功耗低的特點(diǎn) , 鮑鵬+昇騰的專用服務(wù)器也在數(shù)據(jù)中心取得應(yīng)用 。

    中科院背景的寒武紀(jì) , 依托在芯片領(lǐng)域的深厚積累 , 成為科創(chuàng)版第一個(gè)上市的 AI 芯片公司 , 其推出的 MLU220 和 MLU270 芯片分別能夠提供 8TOPS 和128TOPS 的算力 , 也已經(jīng)在多個(gè)行業(yè)取得應(yīng)用 。除寒武紀(jì)以外 , 還有眾多創(chuàng)業(yè)公司切入 AI 加速 SOC 的賽道 , 如地平線的征程 、 旭日芯片 , 依圖的求索芯片等 。與通用處理器類似 , 國內(nèi)不乏能夠設(shè)計(jì)頂級 AI 加速 SOC 的廠商 , 主要風(fēng)險(xiǎn)在于先進(jìn)制程芯片的代工制造 。

    CMOS 傳感器。視頻圖像的采集質(zhì)量 , 直接關(guān)系到人臉識別系統(tǒng)的準(zhǔn)確率 , 而視頻圖像的采集 , 則離不開 CMOS 傳感器 。目前主流的 CMOS 傳感器的供應(yīng)商包括索尼 (SONY) 、 三星 ( SANSUNG ) 、 豪威科技 (Ominivison) 和安森美 (ON Semiconductor ) 等 。

    其中 SONY 以其長期的技術(shù)積累 , 無論是消費(fèi)電子還是安防等專業(yè)應(yīng)用領(lǐng)域 , 都占據(jù)了較高的市場份額 。三星主要應(yīng)用于手機(jī)等消費(fèi)電子 , 豪威科技和安森美則集中在安防 、 汽車電子專業(yè)領(lǐng)域發(fā)力 。國產(chǎn) CMOS的選擇有中星微 、 格科微等 , 不過目前主要仍然應(yīng)用在 USB 攝像頭等一些消費(fèi)領(lǐng)域 , 尚未進(jìn)入專業(yè)市場 。

    隨著疫情的發(fā)展 , 測溫需求快速爆發(fā) 。熱成像傳感器是一種特殊的成像傳感器 , 因其屬于軍民兩用的特性 , 國內(nèi)傳統(tǒng)供應(yīng)商包括高德紅外 、 大立科技等 。??低曇詣?chuàng)新業(yè)務(wù)的方式持續(xù)加大在熱成像傳感方面的投入 , 今年 4 月更是從福建安芯半導(dǎo)體采購光刻機(jī)用于熱成像傳感芯片的生產(chǎn) 。大華股份則于2018 年與FLIR建立合作 , 切入此項(xiàng)業(yè)務(wù) 。

    存儲芯片。存儲芯片在智能終端中占據(jù)了較大一部分成本 , 具體包括 RAM 芯片和 FLASH 芯片 , 其中 FLASH 芯片又可以進(jìn)一步分為 NOR FLASH 和 NAND FLASH 。

    面向通用服務(wù)器的 RAM 芯片的供應(yīng)商主要包括三星 ( SANSUNG ) 、 海力士 ( Hynix ) 等 , 因規(guī)模效應(yīng) , 韓系供應(yīng)商的地位難以撼動 。面向嵌入式設(shè)備的選擇更加豐富 , 合肥長鑫和紫光半導(dǎo)體等國內(nèi)廠家也在積極投入 , 已經(jīng)進(jìn)入到投產(chǎn)階段 。

    與 NAND FLASH 廣泛應(yīng)用于 SSD 相比 , NOR FLASH 則相對小眾 , 主要應(yīng)用于嵌入式設(shè)備 。我國的兆易創(chuàng)新是該領(lǐng)域的主流供應(yīng)商之一 , 占據(jù)全球第四的市場排名 。NAND FLASH 與 RAM 類似 , 具有通用性 , 是半導(dǎo)體行業(yè)的必爭之地 , 除三星和海力士之外 , 東芝 、 鎂光 、 西部數(shù)據(jù)等也都是這一領(lǐng)域的角逐者 。國內(nèi)的長江存儲推出了與主流產(chǎn)品性能相當(dāng)?shù)?64 層 3D NAND, 并在華為mate 系列高端手機(jī)中取得了應(yīng)用。

    其他器件。其他的應(yīng)用于人臉識別行業(yè)的器件則與通用的電子行業(yè)類似 , 主要包括電源芯片 、 電阻 、 電容 、 電感 、 PCB 敷銅板等 。總體來說 , 國內(nèi)的供應(yīng)基本可控,但在高精度要求方面 , 仍需要借助國外供應(yīng)商 。在全球化產(chǎn)業(yè)鏈高度發(fā)展的今天 , 各個(gè)領(lǐng)域都有深度耕耘者 , 全球化采購最優(yōu)器件 , 仍然度的最佳選擇 。

    通用硬件:

    通用服務(wù)器。通用服務(wù)器在人臉識別系統(tǒng)中的主要作用是業(yè)務(wù)系統(tǒng)和管理節(jié)點(diǎn) , 從軟件生態(tài)的完備性角度 , 通用服務(wù)器以 X86 架構(gòu)為主 , 但 ARM 、 RISC-V 等其他架構(gòu)的服務(wù)器已經(jīng)嶄露頭角 。x86 服務(wù)器的供應(yīng)商主要包括 Dell 、 聯(lián)想 、 曙光 、浪潮等 , 華為的泰山服務(wù)器則是 ARM 架構(gòu)的典型代表 。

    計(jì)算服務(wù)器。AI 服務(wù)器是采用異構(gòu)形式的服務(wù)器 , 出于生態(tài)友好和總算力高兩方面因素,目前的主流方案仍是 Intel x86CPU+Nvidia GPU, 最新的 8 卡 T4 GPU 服務(wù)器 ,能夠提供 1040T ( 單卡 130T ) 的算力 。隨著專門為 AI 計(jì)算設(shè)計(jì)的 SOC 的成熟,采用 SOC 作為加速卡也成為性價(jià)比和功耗比更優(yōu)的選擇 。在 Al SOC 的選擇面上 , 國內(nèi)已然走在行業(yè)前列 , 如華為的昇騰 310 芯片 , 單顆算力 16T, 四顆組成半高的計(jì)算卡總算力 64T, 但相同算力下功耗只有 GPU 的 l/7o 其他的如寒武紀(jì)的 MLU220 和 MLU270 、 比特大陸的算豐芯片等 , 也都已經(jīng)取得了應(yīng)用 。

    存儲服務(wù)器。存儲服務(wù)器是人臉識別系統(tǒng)中的重要構(gòu)成 , 是專門針對存儲任務(wù)進(jìn)行優(yōu)化的專用設(shè)備 。在硬件形態(tài)上 , 其主要特點(diǎn)是硬盤多 , 通常包含 8 至 48 塊硬盤 。為了保證效率 , 硬盤通常以 SAS 硬盤或者 SSD 為主 。SAS 硬盤的主要供應(yīng)商以希捷和西部數(shù)據(jù)為主 , SSD 的供應(yīng)商則更為豐富 , Intek 三星以及國內(nèi)的存儲廠商也積極參與 SSD 的競爭 。存儲服務(wù)器針對軟件的優(yōu)化主要是采用 RAIDs多機(jī)分布式等增加存儲數(shù)據(jù)的安全性 , 相關(guān)技術(shù)相對成熟 。

    智能終端。包括智能手機(jī) 、 智慧屏在內(nèi)的通用智能終端 , 是人臉識別應(yīng)用的重要領(lǐng)域 。從操作系統(tǒng)層面將智能終端分為兩大類 , 一類是采用自有 iOS 系統(tǒng)的 iPhone,牢牢占據(jù)了市場占有率的榜首 , 另一類則是應(yīng)用更加廣泛的 Android 系統(tǒng)的設(shè)備,又以華為占據(jù) Android 榜單的榜首 , 我國的小米 、 OPPO 、 vivo 也是建樹頗豐 。值得注意的是 , 華為和蘋果是僅有的兩家能夠從芯片到操作系統(tǒng)再到軟件生態(tài)全流程優(yōu)化的供應(yīng)商 , 在一定程度上解釋了這兩家企業(yè)的競爭優(yōu)勢 。

    基礎(chǔ)軟件:

    訓(xùn)練框架。目前人臉識別算法大多基于深度學(xué)習(xí)技術(shù) , Tensorflowx Pytorch 、Mxnet 、 Caffe 是最常用的訓(xùn)練框架 。由于人臉識別存在類別大 、 loss 多樣等特點(diǎn) , 在上述深度學(xué)習(xí)框架基礎(chǔ)上需要結(jié)合人臉識別本身的特點(diǎn)進(jìn)一步的優(yōu)化擴(kuò)展 , 其中代表性的開源框架為 lnsightface。在工業(yè)界 , 各企業(yè)內(nèi)部往往也有各自的訓(xùn)練平臺 , 以實(shí)現(xiàn)數(shù)據(jù) 、 訓(xùn)練 、 部署等環(huán)節(jié)的協(xié)同 , 一些優(yōu)秀的內(nèi)部框架也在逐步開源 。但由于訓(xùn)練框架切換學(xué)習(xí)成本高 , 整體的生態(tài)建設(shè)仍待加強(qiáng) 。

    推理引擎。推理引擎與訓(xùn)練框架相對應(yīng) , 主要用于模型在設(shè)備端的高效 ( 前向 ) 運(yùn)行 。一些訓(xùn)練框架會配套對應(yīng)的推理引擎 , 也有一些獨(dú)立于訓(xùn)練框架的推理引擎軟件 。此外 , 深度學(xué)習(xí)芯片也會提供各自的推理引擎軟件實(shí)現(xiàn)加速 。由于推理引擎往往針對特定結(jié)構(gòu)或者硬件深度優(yōu)化 , 對于一些新型的網(wǎng)絡(luò)結(jié)構(gòu)擴(kuò)展性較差或者優(yōu)化效率不高 , 容易導(dǎo)致一些新算法無法快速落地 。

    其他環(huán)節(jié)。人臉識別完整流程除深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)外還包括圖像預(yù)處理 、 特征后處理等流程 。目前缺乏效果且通用的實(shí)現(xiàn)方式 , 尤其是在芯片端 ,征比對之類圖像處理和數(shù)學(xué)運(yùn)算類的功能缺失 , 增加開發(fā)成本性能損失 。

    算法技術(shù):近年來隨著深度學(xué)習(xí)的發(fā)展 , 人臉識別技術(shù)取得了突破性進(jìn)步 , 全球范圍內(nèi)相關(guān)研究團(tuán)隊(duì)眾多 , 以中美俄日歐等國家和地區(qū)較為領(lǐng)先 。根據(jù) NISTFR 町2020 年 10 月的測試結(jié)果 , 全球排名前 10 的算法半數(shù)以上來自中國 。

    雖然各國的人臉識別算法有性能上的差異 , 但差距并不大 。以 FR 町 VISA測試集為例 , 百萬分之一誤報(bào)對應(yīng)正確率前 30 廠家性能都已超過或者接近99% 。人臉識別的技術(shù)發(fā)展已由注重算法精度提升向以改善實(shí)際應(yīng)用效果的方向轉(zhuǎn)變 , 并出現(xiàn)了以下應(yīng)用趨勢 。

    由簡單場景向復(fù)雜場景轉(zhuǎn)變。簡單場景人臉識別精度趨于飽和已經(jīng)成為業(yè)界的共識 , 業(yè)界將注意力轉(zhuǎn)移到復(fù)雜場景人臉識別問題并表現(xiàn)在具體應(yīng)用場景上 。從高分辨率 、 小姿態(tài) 、 光照適中的優(yōu)質(zhì)人臉卡口場景轉(zhuǎn)變到低分辨率 、 大姿態(tài) 、 低照度 、 模糊等低畫質(zhì)開放式場景 , 這對人臉識別算法適應(yīng)能力提出了新的挑戰(zhàn) , 也是業(yè)界努力提升的方向 。

    3D 人臉成為配合式應(yīng)用的重要方向,隨著 2017 年 iPhone X 首次將 Face ID 引入手機(jī)端 , 3D 人臉識別技術(shù)逐漸成為手機(jī)廠商旗艦機(jī)型的標(biāo)準(zhǔn)配置 。相比于 2D 人臉 , 3D 人臉包含更為豐富的人臉信息 , 對旋轉(zhuǎn) 、 遮擋 、 光照 、 照片攻擊等具有更好的抗干擾能力 。在以門禁考勤 、 金融支付為代表近距離配合式應(yīng)用中 3D 人臉逐漸成為常用的技術(shù)解決手段 。

    多生物特征融合成為新的趨勢。多生物特征融合能彌補(bǔ)單生物特在的不足 , 實(shí)現(xiàn)優(yōu)勢互補(bǔ) , 提升系統(tǒng)精度,改善應(yīng)用體驗(yàn) 。在近距離配合式應(yīng)用中 , 采用人臉識別與虹膜識別技術(shù)融合可解決雙胞胎等人臉識別難以解決的問題 , 增強(qiáng)雙胞胎金融支付應(yīng)用的安全 ;在安防場景 , 相機(jī)角度 、 分辨率等問題存在人臉質(zhì)量較差以及獲取不到人臉等情況 , 步態(tài)識別 、 行人重識別等技術(shù)的融入能進(jìn)一步擴(kuò)大整個(gè)身份識別系統(tǒng)的算法邊界 。

    人臉識別公平性問題亟待解決。由于安全隱私顧慮 、 經(jīng)濟(jì)科技水平落后和貿(mào)易壁壘等因素 , 人臉識別技術(shù)在全球的整體普及程度仍然偏低且存在發(fā)展不平衡現(xiàn)象 。根據(jù) NIST 的分析報(bào)告 , 歐美 、 亞洲為人臉識別技術(shù)主要供應(yīng)商 , 各國算法優(yōu)化主要依賴本國環(huán)境,跨人種 、 跨地域 、 跨場景等仍會給人臉識別算法帶來一定影響 。除了準(zhǔn)確率的持續(xù)優(yōu)化 , 全球范圍內(nèi)安全隱私 、 公平性等問題亟待解決。

    設(shè)備及產(chǎn)品:

    人臉抓拍機(jī):人臉抓拍機(jī)內(nèi)置 AI 芯片和深度學(xué)習(xí)算法 , 適應(yīng)于人流密集的通道 、 出入口等多種場景需求 , 實(shí)現(xiàn)對人群中人臉的精準(zhǔn)捕捉 。人臉抓拍機(jī)目前已普遍部署在汽車站 、 火車站 、 機(jī)場 、 港口 、 娛樂場所 、 街道 、 社區(qū)等人員復(fù)雜場景的重點(diǎn)監(jiān)控區(qū)域 , 對場景的適應(yīng)性是其性能的重要指標(biāo) 。在大姿態(tài) 、 遮擋 、 光照異常等復(fù)雜情況下的人臉抓拍成功率 , 在自然監(jiān)控環(huán)境中誤抓率都是設(shè)備性能體現(xiàn) , 也是用戶的選擇依據(jù) 。

    隨著安防監(jiān)控智能化的發(fā)展 , 捕捉更精細(xì)更全面的結(jié)構(gòu)化信息成為趨勢 。目前各大廠商都推出了抓拍人臉 、 人體 、 車輛 、 車牌等多維信息的面向視頻結(jié)構(gòu)化應(yīng)用的抓拍機(jī) , 多 AI 算法的集成以及多路實(shí)時(shí)抓拍的需求 , 要求前端設(shè)備廠商進(jìn)一步壓縮算法模型和提升芯片處理速度 。另外 , 前端設(shè)備脫離于后端服務(wù)器 , 功能從單純捕捉信息到捕捉 、 分析 、 決策方向發(fā)展 , 這也符合智能前移為邊緣節(jié)點(diǎn)賦能 , 讓邊緣感知信息的發(fā)展趨勢。

    門禁設(shè)備:門禁設(shè)備是以人臉識別技術(shù)為核心的身份識別終端產(chǎn)品 , 它集成了視頻采集 、 人臉識別 、 證件識別 、 紅外偵測及網(wǎng)絡(luò)傳輸?shù)榷喾N功能 。目前市場上的門禁產(chǎn)品發(fā)展比較成熟 , 同質(zhì)化嚴(yán)重 , 但也展露一些新趨勢 。

    隨著門禁設(shè)備的普及化和民用化 , 安全問題越來越受到重視 , 防偽功能成為標(biāo)配 。由于攻擊方式多樣性 , 即使配備防偽功能的設(shè)備也存在技術(shù)缺失或適應(yīng)性差的問題 , 安全性能有待持續(xù)提升并完善 。今年由于疫情管控的需要 , 集成測溫功能的門禁設(shè)備逐漸普及 。未來安全性和差異化滿足個(gè)性化需求將成為門禁類產(chǎn)品的重要發(fā)展方向 。

    網(wǎng)絡(luò)硬盤錄像機(jī)設(shè)備:網(wǎng)絡(luò)硬盤錄像機(jī) (Network Video Recorder, NVR) 最主要的功能是通過網(wǎng)絡(luò)接收 IPC (網(wǎng)絡(luò)攝像機(jī))設(shè)備傳輸?shù)臄?shù)字視頻碼流 , 并進(jìn)行存儲與管理 。NVR 設(shè)備內(nèi)置人臉檢測 、 人臉識別功能可提升存儲數(shù)據(jù)的有效性以及關(guān)鍵數(shù)據(jù)的檢索效率 , 目前已成為 NVR 設(shè)備的主要賣點(diǎn) 。

    移動終端:隨著刷臉功能的普及 , 手機(jī)逐步成為人臉識別的重要終端之一 , 通過手機(jī)即可完成刷臉登錄和刷臉支付 。相對于傳統(tǒng)的密碼解鎖和支付 , 刷臉具有更高的便捷性和安全性 。未來人臉識別在智能手機(jī)的普及率會進(jìn)一步提升 , 也將有越來越多的手機(jī)應(yīng)用借助人臉識別進(jìn)行身份驗(yàn)證 。

    人臉分析服務(wù)器:基于深度學(xué)習(xí)的人臉識別算法在實(shí)際應(yīng)用中需要消耗大量的計(jì)算資源 , 長期以來 GPU 為首的通用架構(gòu)芯片是進(jìn)行深度學(xué)習(xí)計(jì)算最常用的計(jì)算資源 。然而 , GPU 服務(wù)器體積大 、 能耗高 , 在很多應(yīng)用場景中已成為限制人工智能發(fā)展的瓶頸 。

    基于人臉識別專用 ASIC 芯片的解析一體機(jī)或服務(wù)器 , 在性能 、 成本 、功耗 、 可靠性及適用范圍等方面都具有明顯的優(yōu)勢 。在很多實(shí)際應(yīng)用場景中 ,專用解析一體機(jī)或服務(wù)器在提供同等算力的情況下 , 消耗更少的能量 , 占用更小的體積 , 發(fā)熱量也更小 。例如搭載 “ 求索 ” 芯片的 1 臺 1U 依圖原子服務(wù)器無需英特爾 CPU, 與 8 卡英偉達(dá) P4 服務(wù)器對比 , 解析路數(shù)相同情況下單路功耗不到后者的 1 0%。

    人臉比對服務(wù)器:隨著智慧城市 、 一人一檔等人臉大數(shù)據(jù)應(yīng)用 , 對人臉特征比對支持的庫容規(guī)模 、 并發(fā)量 、 響應(yīng)速度提出新的要求 , 隨之產(chǎn)生專用的比對服務(wù)器 。GPU由于生態(tài)友好且算力高 , GPU 卡的比對服務(wù)器在各行業(yè)應(yīng)用中有較大占比 。與分析服務(wù)器類似 , GPU 比對服務(wù)器存在體積大 、 功耗高的缺點(diǎn) 。

    FPGA 芯片更合適人臉特征比對運(yùn)算 , 具有大庫容高并發(fā)的特點(diǎn) , 基于 FPGA 的人臉比對服務(wù)器在性能 、 層本 、 功耗等方面皆具備明顯優(yōu)勢 , 該類產(chǎn)品已嶄露頭角 。此外,隨著 CPU 芯片計(jì)算能力和指令集的不斷優(yōu)化 , 芯片廠家和服務(wù)器廠家也在聯(lián)合嘗試基于 CPU 的人臉比對服務(wù)器產(chǎn)品 , 基于 CPU 的產(chǎn)品方案也值得關(guān)注 。

    解決方案:

    人臉識別系統(tǒng)業(yè)務(wù)功能主要包括人臉核驗(yàn) 、 人臉布控 、 人臉檢索 、人臉聚類等 , 可以通過上述不同的設(shè)備構(gòu)建不同的解決方案 。按照應(yīng)用場景和數(shù)據(jù)規(guī)模 , 解決方案可以歸納為人臉考勤方案 、 人臉布控方案和人臉大數(shù)據(jù)應(yīng)用方案 。

    人臉考勤解決方案:人臉考勤解決方案可以由單個(gè)門禁設(shè)備構(gòu)成 , 亦可由人臉抓拍機(jī) +NVR 或人臉服務(wù)器的方式構(gòu)成 , 包含人臉注冊 、 人臉抓拍 、 人臉建模和人臉比對功能,并配備管理系統(tǒng) , 具備考勤權(quán)限 、 數(shù)據(jù)存刪 、 參數(shù)設(shè)置和隱私保護(hù)等功能 。

    人臉布控解決方案:人臉布控解決方案 , 通常由人臉抓拍機(jī)+人臉分析服務(wù)器構(gòu)成 。當(dāng)單臺人臉分析服務(wù)器不足以提供所需性能時(shí) , 可以采用多集群方式 ;當(dāng)系統(tǒng)需要接入傳統(tǒng) IPC 視頻碼流時(shí) , 亦可在分析服務(wù)器實(shí)現(xiàn)人臉抓拍 。

    人臉大數(shù)據(jù)應(yīng)用解決方案:省級 、 全國級靜態(tài)庫檢索 , 市 / 縣級人臉聚類是常見的人臉大數(shù)據(jù)應(yīng)用 ,其解決方案通常由人臉抓拍機(jī)+人臉分析服務(wù)器+人臉比對服務(wù)器構(gòu)成 , 其系統(tǒng)通常為分布式系統(tǒng) , 圖像處理單元和特征比對單元按照應(yīng)用所需的處理并發(fā)數(shù)進(jìn)行部署 。該類系統(tǒng)通常與其他智能分析系統(tǒng)(如人體分析 、 步態(tài)分析)進(jìn)行打通 , 并利用大數(shù)據(jù)分析技術(shù)進(jìn)一步提升系統(tǒng)的可用性和整體性能。

    不同廠家人臉產(chǎn)品形態(tài)有所差異 , 但其人臉產(chǎn)品的核心功能大同小異 , 因此由人臉產(chǎn)品組成的人臉識別系統(tǒng)功能和流程相對固定 , 上述解決方案具有極高的通用性 。產(chǎn)業(yè)鏈中基礎(chǔ)層 、 算法和設(shè)備的發(fā)展主要在于提升人臉識別的效果和效率 , 不會影響整體功能和流程 , 解決方案是相對穩(wěn)定的環(huán)節(jié) 。

    3、典型應(yīng)用領(lǐng)域

    科技金融。人臉識別在金融領(lǐng)域的應(yīng)用已經(jīng)相當(dāng)普遍 , 如遠(yuǎn)程銀行開戶 、 身份核驗(yàn) 、保險(xiǎn)理賠和刷臉支付等 。人臉識別技術(shù)的接入 , 能有效提高資金交易安全的保障 , 也提高了金融業(yè)務(wù)中的便捷性。

    2013 年芬蘭公司 Uniqul 成為首批吃螃蟹的公司 , 面向全球首次推出人臉識別支付這一創(chuàng)新支付技術(shù) 。2015 年在德國漢諾威 CeBIT 展會上馬云第一次向德國總理默克爾展示了支付寶的人臉識別支付技術(shù) 。同年 , 招商銀行在一些支行柜面和ATM業(yè)務(wù)也開始應(yīng)用人臉識別 , 隨后包括建設(shè)銀行 、 農(nóng)業(yè)銀行等四大行在內(nèi)的數(shù)十家銀行都紛紛將人臉識別產(chǎn)品引入ATM 、 STM 、 柜面 、 網(wǎng)點(diǎn) 、手機(jī)銀行等各個(gè)業(yè)務(wù)環(huán)節(jié) , 并逐漸全客戶覆蓋 。

    時(shí)至今日 , 人臉識別技術(shù)在國內(nèi)金融領(lǐng)域已經(jīng)得到了非常廣泛的部署和應(yīng)用 , 消費(fèi)者在各個(gè)渠道中都可以利用人臉識別技術(shù)使用金融服務(wù) ,中國在人臉識別技術(shù)的應(yīng)用上已經(jīng)大幅度領(lǐng)先國外市場。

    智慧安防。安防是人臉識別市場最早滲透 、 應(yīng)用最廣泛的領(lǐng)域 。根據(jù)億歐研究 , 2018年 , 安防行業(yè)在中國人臉識別市場占比 61.2% 。當(dāng)前人臉識別技術(shù)主要為視頻結(jié)構(gòu)化 、 人臉檢索 、 人臉布控 、 人群統(tǒng)計(jì)等軟硬件一體形態(tài)產(chǎn)品提供基礎(chǔ)支撐,重點(diǎn)應(yīng)用于犯罪人員的識別追蹤 、 失蹤兒童尋找 、 反恐行動助力等場景 。

    視頻監(jiān)控系統(tǒng)通過龐大的監(jiān)控網(wǎng)絡(luò)進(jìn)行圖像采集 、 自動分析 、 人臉比對 , 基于視頻幀的 1 :1 及 1 :N 人臉比對 , 可分析人員軌跡 、 出行規(guī)律等 , 實(shí)現(xiàn)重點(diǎn)人員的識別及跟蹤 , 在公安應(yīng)用場景中達(dá)到事前預(yù)警 、 事中跟蹤 、 事后快速處置的目的 。在雪亮工程 、 天網(wǎng)工程 、 智慧社區(qū) 、 反恐及重大活動安保等公安項(xiàng)目發(fā)揮了重要的作用 。

    此外 , 在企業(yè)樓宇 、 社區(qū)住宅的人員管理和安全防范需求場景下 , 人臉識別技術(shù)應(yīng)用非常廣泛 , 通過人臉的黑白名單錄入 , 可有效管控區(qū)域人員出入 ,機(jī)器識別的高效率也大幅節(jié)省了人力資源。

    智慧交通。國外的公共交通領(lǐng)域?qū)θ四樧R別技術(shù)的應(yīng)用主要集中在機(jī)場安檢以及入境管理等特別強(qiáng)調(diào)安全的場景 。加拿大渥太華國際機(jī)場 、 澳大利亞當(dāng)?shù)匾泼窦斑吘潮Wo(hù)局與美國海關(guān)與邊境保護(hù)局皆已嘗試部署人臉識別出入境系統(tǒng)。

    國內(nèi)交通領(lǐng)域的人臉識別應(yīng)用主要包括 1 :1 人臉驗(yàn)證和 1 : N 人臉辨識 。目前利用人臉核驗(yàn)證技術(shù)的刷臉安檢已進(jìn)入普遍應(yīng)用階段 , 在高鐵站 、 普通火車站和機(jī)場皆已大面積推廣 。而應(yīng)用 1 :N 人臉比對技術(shù)的刷臉支付主要落地在地鐵公交等市內(nèi)交通 , 這種技術(shù)能夠極大提高通勤人員的出行效率 , 釋放大量的人力資源 , 提升出行體驗(yàn) 。同時(shí) , 人臉識別可以對交通站點(diǎn)進(jìn)行人流監(jiān)測 ,根據(jù)人員出行規(guī)律預(yù)測交通人流高峰 , 提前做好疏導(dǎo)預(yù)案 。

    除此之外 , 在交通違規(guī)管控方面 , 人臉識別技術(shù)可以幫助執(zhí)法人員更快速高效地找到違規(guī)人員身份信息 , 并結(jié)合車輛識別等技術(shù)進(jìn)行跟蹤攔截。

    民生政務(wù)。政務(wù)互聯(lián)網(wǎng)平臺、 公積金 、 社保 、 稅務(wù) 、 網(wǎng)證 、 交通管理 、 行人闖紅燈 、繳交交通罰款 、 住建等民生政務(wù)系統(tǒng) , 已經(jīng)使用或正在使用人臉識別系統(tǒng) 。政務(wù)服務(wù)領(lǐng)域的業(yè)務(wù)點(diǎn)主要有私有云平臺搭建 、 政務(wù)服務(wù)自助終端 、 便民服務(wù)平臺 。

    人臉識別在政務(wù)系統(tǒng)的落地 , 提升了民眾的辦事效率 , 公民可以不用窗口排隊(duì) , 實(shí)現(xiàn)自助辦事 , 節(jié)省了因人工效率低下產(chǎn)生的耗時(shí) 。部分政務(wù)還可以通過在線人臉識別認(rèn)證 , 在移動端線上辦理 , 減輕了 “ 辦事來回跑 、 辦事地點(diǎn)遠(yuǎn) 、辦事點(diǎn)分散 ” 的困擾 。

    教育考試。智慧教育在高速發(fā)展的同時(shí) , 不斷深入采用物聯(lián)網(wǎng) 、 云計(jì)算 、 大數(shù)據(jù)等先進(jìn)信息技術(shù)手段 , 實(shí)現(xiàn)各種教育管理與教學(xué)過程數(shù)據(jù)的全面采集 、 存儲與分析,并通過可視化技術(shù)進(jìn)行直觀的呈現(xiàn) 。

    在這個(gè)過程中 , 相關(guān)科技企業(yè)基于自身在人工智能 、 視頻可視化技術(shù) 、 出入口門禁管理 、 大數(shù)據(jù) 、 云計(jì)算等領(lǐng)域積累的技術(shù)產(chǎn)品經(jīng)驗(yàn) , 致力于推動智慧教育的行業(yè)發(fā)展 , 打造升級智慧校園 、 智慧教室 、 智慧宿舍 、 智慧圖書館 、 智慧食堂 、 智慧超市等教育相關(guān)的安全管控 、 課堂考勤 、 刷臉消費(fèi)和智能化體驗(yàn) 。同時(shí) , 人臉識別技術(shù)也應(yīng)用在考生身份確認(rèn) 。

    智能家居。人臉識別在智能家居中主要應(yīng)用在安全解鎖和個(gè)性化家居服務(wù)兩個(gè)場景 。在安全防范方面 , 人臉識別可以提供相對安全和便捷的入戶解鎖技術(shù) , 將可能逐步替代傳統(tǒng)密碼或指紋門鎖 。智能門鈴可以通過人臉識別對訪客身份進(jìn)行識別 。另外家中的監(jiān)控?cái)z像頭可以實(shí)時(shí)監(jiān)測 , 如發(fā)現(xiàn)陌生人臉立即提醒住戶并報(bào)警 。

    在個(gè)性化家居服務(wù)方面 , 智能電視可以采用人臉信息錄入的方式創(chuàng)建賬號 ,機(jī)器通過人臉識別認(rèn)證 , 有針對性的進(jìn)行內(nèi)容推送 , 實(shí)現(xiàn)個(gè)性化定制 ;智能冰箱可通過人臉識別技術(shù) , 針對不同的用戶愛好 、 人臉狀態(tài) , 推送菜譜及營養(yǎng)建議 。人臉識別技術(shù)在智能家居行業(yè)的應(yīng)用 , 為市民帶來了更便捷 、 舒適的生活方式 。

    4、 行業(yè)發(fā)展趨勢

    應(yīng)用場景向各行業(yè)滲透 , 市場規(guī)模增長趨勢出現(xiàn)分化。隨著技術(shù)發(fā)展和安全性要求的提高 , 人臉識別技術(shù)在行業(yè)應(yīng)用中發(fā)生巨大變化 , 從安全性可靠性要求較低的行業(yè)上升到金融社保 、 證券 、 銀行 、 互聯(lián)網(wǎng)金融等安全可靠性要求較高的行業(yè) 。我國人臉識別技術(shù)目前主要運(yùn)用在公共安防 、 門禁考勤 、 金融支付三大領(lǐng)域 。

    區(qū)分不同的應(yīng)用領(lǐng)域來看 , 其趨勢逐漸出現(xiàn)分化 。從 2019 年看 , 安防作為人臉識別最早應(yīng)用的領(lǐng)域之一 , 其市場份額占比在 30% 左右 。隨著雪亮工程 、 智慧城市建設(shè)的逐步完成 , 人臉識別在安防領(lǐng)域逐漸從增量市場轉(zhuǎn)變?yōu)榇媪渴袌?。

    人臉識別在門禁考勤領(lǐng)域的應(yīng)用最為成熟 , 約占行業(yè)市場的 42% 左右 , 隨著智慧樓宇 、 智慧社區(qū) 、 智慧家居的進(jìn)一步發(fā)展 , 人臉識別門禁考勤市場也將隨之增長 。金融作為人臉識別未來重要的應(yīng)用領(lǐng)域之一 , 目前約占行業(yè)的 20%, 并且市場規(guī)模在逐步擴(kuò)大 。

    全球公共衛(wèi)生環(huán)境變化 , 人臉識別迎來應(yīng)用新需求。新冠肺炎疫情的爆發(fā)并在全世界流行 , 威脅人類生命安全與健康 , 引發(fā)了一場全球公共衛(wèi)生危機(jī) 。相對于指紋 、 刷卡等接觸式身份識別模式 , 人臉識別等非接觸式識別模式更適用于當(dāng)前受新冠病毒影響的全球公共衛(wèi)生環(huán)境 , 減少病毒通過接觸感染人群 。

    一方面 , 人臉識別技術(shù)結(jié)合紅外體溫監(jiān)測技術(shù) , 獲取人員身體健康狀況信息 , 能及時(shí)反饋并控制疫情源頭 ;另一方面 , 監(jiān)控系統(tǒng)的全面布控 , 可檢測獲取重點(diǎn)人員流動信息 , 幫助政府防控管制措施做到有的放矢。

    目前全球公共衛(wèi)生環(huán)境形式依舊嚴(yán)峻 , 根據(jù)智源發(fā)布的 《 人臉識別與公共衛(wèi)生調(diào)研報(bào)告 》 顯示 , 受訪者普遍贊同加強(qiáng)人臉識別技術(shù)的能力 , 81.9% 的人同意增強(qiáng)對戴有口罩的人的面部識別 。為完善疫情防控體系 , 進(jìn)一步阻斷傳播源 , 戴口罩人臉識別技術(shù)的新需求浮出水面 。

    計(jì)算芯片技術(shù)發(fā)展 , 支撐人臉識別大規(guī)模應(yīng)用。人臉識別算法的工業(yè)應(yīng)用和算法性能除了自身模型性能外 , 依賴于算法運(yùn)行的硬件芯片環(huán)境 。以英偉達(dá)的 GPU 和英特爾的 CPU 為代表的通用架構(gòu)芯片作為人臉識別算法訓(xùn)練和推理最常用的計(jì)算資源 。

    同時(shí) , 為了滿足人臉識別應(yīng)用場景的不斷拓展和數(shù)據(jù)量的急劇增長對算力的強(qiáng)烈需求 , 基于領(lǐng)域?qū)S眉軜?gòu) ( Domain Specific Architectures, DSA) 理念的行業(yè)專用定制芯片憑借著對特定領(lǐng)域的算法優(yōu)化 , 可以充分發(fā)揮計(jì)算資源和算法模型的效能 , 已經(jīng)被部分廠商應(yīng)用于人臉識別算法的訓(xùn)練和推理應(yīng)用 , 如海思 、 依圖 、 寒武紀(jì)等企業(yè)推出的云端計(jì)算芯片 , 可以逐漸替代 GPU 成為其人臉識別技術(shù)應(yīng)用的主流計(jì)算資源。

    近年來 , 信息量的爆炸式增長給數(shù)據(jù)傳輸存儲及中心計(jì)算帶來了巨大的壓力 , 邊緣計(jì)算應(yīng)運(yùn)而生 。隨著 AI 芯片技術(shù)的飛速發(fā)展 , 邊緣計(jì)算設(shè)備的算力不斷提高 , 越來越多的計(jì)算由邊緣側(cè)承擔(dān) 。一方面 , 邊緣計(jì)算能有效緩解帶寬承載 , 提高計(jì)算傳輸效率 , 滿足實(shí)時(shí)響應(yīng)需求 , 增強(qiáng)數(shù)據(jù)安全性 ;另一方面 ,模型壓縮及加速技術(shù)以及適合人臉識別算法運(yùn)算的專用 AI 芯片不斷完善 , 邊緣設(shè)備的人臉識別算法精度持續(xù)提升 , 目前基于 AI 芯片的邊緣設(shè)備應(yīng)用基本覆蓋社區(qū) 、 學(xué)校 、 醫(yī)院 、 園區(qū) 、 交通等場景 , 支撐人臉識別的大規(guī)模應(yīng)用 。

    云邊端協(xié)同部署 , 人臉識別應(yīng)用迎來新場景新模式。云邊端的協(xié)同部署模式將人臉識別應(yīng)用模塊分?jǐn)偟礁鞑糠?, 通過前端邊緣計(jì)算實(shí)現(xiàn)布控報(bào)警 , 邊端對人臉特征做聚類分析 , 云端匯聚有效信息 , 進(jìn)行大數(shù)據(jù)對比分析 , 開展調(diào)度工作 。

    云邊端協(xié)同部署方式緩解了云端壓力 , 支持業(yè)務(wù)分級響應(yīng) , 云邊結(jié)合人臉識別系統(tǒng)通過對云端和邊緣端資源的統(tǒng)一配置 、 管理 、 調(diào)度 , 融合了邊緣計(jì)算敏捷性和云端大數(shù)據(jù)全局性的優(yōu)勢 , 使人臉識別系統(tǒng)在帶寬 、 并發(fā)數(shù) 、 響應(yīng)速度等維度性能全面提升。

    在未來 , 邊緣端設(shè)備的視頻編碼能力和視頻特征抽取能力將進(jìn)一步加強(qiáng) ,AI 應(yīng)用也會將越來越多的計(jì)算承載分?jǐn)偟角岸?。云端則由人像系統(tǒng) 、 視頻結(jié)構(gòu)化系統(tǒng) 、 人臉人體聚類分析等服務(wù)組成 , 通過分析 、 聚類 、 歸檔形成各種主題庫 , 跟各種業(yè)務(wù)應(yīng)用打通 , 滿足更多復(fù)雜場景下的智能化應(yīng)用需要。

    算法技術(shù)國際領(lǐng)先 , 國內(nèi)市場競爭激烈。從全球競爭格局上看 , 中國公司在人臉識別算法上具備相當(dāng)大國際競爭力 。從最新 NIST 主辦的人臉識別算法測試 FR 町來看 , 參加評測的供應(yīng)商有 207 家,其中中國大陸供應(yīng)商有 31 家 。

    在其公布的幾個(gè)主要測試集上 , 共有 7 家中國人臉識別算法供應(yīng)商取得過前三 , 5 家取得過第一 , 且在近一年內(nèi)保持這一優(yōu)勢 ??傮w來說 , 中國的人臉識別算法在國際上已處于領(lǐng)先地位 。

    國內(nèi)市場競爭激烈一方面體現(xiàn)在競爭廠商多 , 包括傳統(tǒng)安防企業(yè) 、 AI 初創(chuàng)企業(yè)和平臺生態(tài)企業(yè) 。傳統(tǒng)安防企業(yè)從安防市場出發(fā) , 對安防視頻行業(yè)的痛點(diǎn)和客戶需求理解較深 , 擁有產(chǎn)品+集成的優(yōu)勢 , 已構(gòu)建起很強(qiáng)的規(guī)模效應(yīng)壁壘 。

    AI 初創(chuàng)企業(yè)主要是一些新興的專注于做算法的計(jì)算機(jī)視覺 ( CV ) 初創(chuàng)企業(yè) ,以 AI 算法為核心優(yōu)勢 , 同時(shí)兼顧 “ 硬件落地 ” 及 “ 產(chǎn)品化 ”。平臺生態(tài)企業(yè) ,依托其強(qiáng)大的云平臺以及云計(jì)算能力 , 以云平臺為核心橫向切入 , 整合合作伙伴的應(yīng)用方案 , 構(gòu)建統(tǒng)一的生態(tài)體系 , 并形成差異化競爭。

    國內(nèi)市場競爭激烈另一方面體現(xiàn)在全產(chǎn)業(yè)鏈競爭 , 從算法競爭延伸到芯片和平臺競爭 。主要市場參與者都已經(jīng)加入 AI 芯片競爭中 , 安防企業(yè)注重邊緣側(cè)和端側(cè)的推理芯片 , 初創(chuàng)公司更注重邊緣側(cè)推理芯片 , 而平臺生態(tài)企業(yè)則注重端 / 云一體 , 構(gòu)建從訓(xùn)練到推理的全棧 AI 生態(tài) 。下游的競爭主要是應(yīng)用層的競爭 , 是生態(tài)的競爭 , 是深耕行業(yè)的競爭 。

    04.

    人臉識別標(biāo)準(zhǔn)化

    1、 標(biāo)準(zhǔn)化組織情況

    國際標(biāo)準(zhǔn)化方面 , 人臉識別標(biāo)準(zhǔn)化工作主要屬于生物特征識別標(biāo)準(zhǔn)化分技術(shù)委員會 (ISO/IEC JTC1/SC37 ) 工作范疇 , 其重點(diǎn)關(guān)注人臉識別基礎(chǔ)標(biāo)準(zhǔn) , 如圖示圖標(biāo)符號 、 樣本質(zhì)量等 , 以及數(shù)據(jù)交換格式及符合性測試方法等。

    其它關(guān)注人臉識別的國外先進(jìn)組織包括電氣與電子工程師協(xié)會 ( Institute of Electrical and Electronics Engineers, IEEE) 、 美國消費(fèi)技術(shù)協(xié)會 (Consumer Technology Association, CTA) 等,其關(guān)注的方向在于生物特征識別呈現(xiàn)攻擊檢測 、 人臉生物特征識別信息的性能評估等 。ITU 與生物特征識別標(biāo)準(zhǔn)相關(guān)的主要是 ITU-T SG1 7 安全標(biāo)準(zhǔn)工作組下設(shè)的 Q9 和 Q10 。Q9 主要關(guān)注在通信應(yīng)用環(huán)境中應(yīng)用生物特征識別及其標(biāo)準(zhǔn)化工作 。

    隨著生物特征識別技術(shù)在電子商務(wù) 、 電子健康和移動支付領(lǐng)域中的廣泛應(yīng)用 , 該工作組同樣關(guān)注生物特征數(shù)據(jù)的隱私保護(hù) 、 可靠性和安全性等方面的各種挑戰(zhàn) 。Q10 關(guān)注身份管理架構(gòu)和機(jī)制 , 部分標(biāo)準(zhǔn)項(xiàng)目與基于生物特征識別身份認(rèn)證相關(guān) 。進(jìn)幾年 , ITU-TSG16 媒體工作組基于視頻監(jiān)控 、 機(jī)器視覺等應(yīng)用場景 、 功能需求 、 業(yè)務(wù)需求 、 性能需求以及安全需求 , 在 Q12 、 Q21 等課題組先后開展人臉識別標(biāo)準(zhǔn)的研究和制定工作 。

    國內(nèi)組織方面 , 主要是全國信息技術(shù)標(biāo)準(zhǔn)化技術(shù)委員會生物特征識別分技術(shù)委員會 ( SACOC28/SC37 ) 和全國安全防范報(bào)警系統(tǒng)標(biāo)準(zhǔn)化技術(shù)委員會人體生物特征識別應(yīng)用分技術(shù)委員會(簡稱 SAC/TC100/SC2 ) 負(fù)責(zé)生物特征識別標(biāo)準(zhǔn)的制定 。其中 SACATC28/SC37 成立了人臉識別 、移動設(shè)備生物特征識別等多個(gè)工作組 , 發(fā)布了人臉樣本質(zhì)量 、 人臉圖像數(shù)據(jù)交換格式 、 移動設(shè)備人臉識別等標(biāo)準(zhǔn) 。SA5C100/SC2 發(fā)布了視頻監(jiān)控 、 出入口控制等公共安全領(lǐng)域的多項(xiàng)人臉識別標(biāo)準(zhǔn) 。

    此外 , 國內(nèi)組織方面 , 全國防偽標(biāo)準(zhǔn)化技術(shù)委員會 ( SAC/TC218 ) 發(fā)布了國家標(biāo)準(zhǔn) 《 生物特征識別防偽技術(shù)要求第 1 部分 :人臉識別 》 。全國金融標(biāo)準(zhǔn)化技術(shù)委員會 ( SAC/TC 180 ) 發(fā)布了國家標(biāo)準(zhǔn) 《 金融服務(wù)生物特征識別安全框架 》 , 并且正在制定 《 人臉識別技術(shù)線下支付安全應(yīng)用規(guī)范 》 等生物特征識別行業(yè)標(biāo)準(zhǔn) 。

    公安部社會公共安全應(yīng)用基礎(chǔ)標(biāo)準(zhǔn)化技術(shù)委員會發(fā)布了行業(yè)標(biāo)準(zhǔn) 《 視頻圖像分析儀第 4 部分 :人臉分析技術(shù)要求 》 。全國信息安全標(biāo)準(zhǔn)化技術(shù)委員會 ( SAC/TC260 )發(fā)布了國家標(biāo)準(zhǔn) 《 信息安全技術(shù)遠(yuǎn)程人臉識別系統(tǒng)技術(shù)要求 》 等。

    2、標(biāo)準(zhǔn)制修訂情況

    國際標(biāo)準(zhǔn)化組織和其他國外先進(jìn)標(biāo)準(zhǔn)組織人臉識別相關(guān)的標(biāo)準(zhǔn)統(tǒng)計(jì)情況見下表。

    ▲ISO 國際標(biāo)準(zhǔn)統(tǒng)計(jì)表

    我國人臉識別相關(guān)的標(biāo)準(zhǔn)情況見下表。

    ▲我國人臉識別相關(guān)的標(biāo)準(zhǔn)情況見表

    智東西認(rèn)為,當(dāng)前 , 我國的人臉識別技術(shù)與應(yīng)用在國際上處于領(lǐng)先地位 ,在科技金融 、 智慧安防 、 智慧交通 、 民生政務(wù) 、 教育考試 、 智能家居等多個(gè)領(lǐng)域得到了廣泛應(yīng)用。但是,近一年人臉識別技術(shù)也出現(xiàn)了很多不良影響,“售樓處暗藏人臉識別”、人臉信息泄露等問題屢見不鮮。隨著技術(shù)門檻的逐步降低,加強(qiáng)安全技術(shù)的研發(fā)和應(yīng)用,完善相關(guān)的法律法規(guī)變得尤為重要。

    原標(biāo)題:《2020人臉識別報(bào)告:上萬家企業(yè)入局,八大技術(shù)六個(gè)趨勢一文看盡【附下載】| 智東西內(nèi)參》

    閱讀原文

    轉(zhuǎn)載請注明來自宜賓民心創(chuàng)傷骨科醫(yī)院有限責(zé)任公司,本文標(biāo)題:《2020人臉識別報(bào)告:上萬家企業(yè)入局,八大技術(shù)六個(gè)趨勢一文看盡》

    百度分享代碼,如果開啟HTTPS請參考李洋個(gè)人博客
    每一天,每一秒,你所做的決定都會改變你的人生!
    Top
     春不晚最新版  圍城集團(tuán)最新信息  最新的貴族  最新版彩樂園  躺平宿舍最新版本2.0  最新西昌旅游消息查詢網(wǎng)  米蘭最新信息今夏  陪讀招聘 常州最新信息  美國和眾匯最新信息  河江土地出租最新信息  羅可嘉最新信息  焦化港口最新信息  方小期最新版  大連學(xué)車最新的價(jià)格c1  河南睢縣最新鮮的事情  最新的小沈陽的小品  鶴壁養(yǎng)魚價(jià)格查詢網(wǎng)最新  最新的校車政策  軍訓(xùn)最新的瓜  尼康最新的單反相機(jī)推薦  qq個(gè)性網(wǎng)男生最新頭像  網(wǎng)紅王波最新視頻  網(wǎng)信集團(tuán)最新信息  東方尋寶最新信息  最新的意外保險(xiǎn)是哪種的  最新鮮的韭芽  14代軒逸最新版本價(jià)格  中原網(wǎng)最新疫情鞏義  鴻蒙發(fā)布最新信息  日鋼招工最新信息